Extensions 1→N→G→Q→1 with N=C62 and Q=D5

Direct product G=N×Q with N=C62 and Q=D5
dρLabelID
D5×C62180D5xC6^2360,157

Semidirect products G=N:Q with N=C62 and Q=D5
extensionφ:Q→Aut NdρLabelID
C621D5 = C32×C5⋊D4φ: D5/C5C2 ⊆ Aut C62180C6^2:1D5360,94
C622D5 = C3×C157D4φ: D5/C5C2 ⊆ Aut C62602C6^2:2D5360,104
C623D5 = C62⋊D5φ: D5/C5C2 ⊆ Aut C62180C6^2:3D5360,114
C624D5 = C2×C6×D15φ: D5/C5C2 ⊆ Aut C62120C6^2:4D5360,159
C625D5 = C22×C3⋊D15φ: D5/C5C2 ⊆ Aut C62180C6^2:5D5360,161

Non-split extensions G=N.Q with N=C62 and Q=D5
extensionφ:Q→Aut NdρLabelID
C62.1D5 = C6×Dic15φ: D5/C5C2 ⊆ Aut C62120C6^2.1D5360,103
C62.2D5 = C2×C3⋊Dic15φ: D5/C5C2 ⊆ Aut C62360C6^2.2D5360,113
C62.3D5 = C3×C6×Dic5central extension (φ=1)360C6^2.3D5360,93

׿
×
𝔽